일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- Model Compression
- Language Modeling
- 표현론
- Github Copilot
- AI
- NLP
- 동형암호
- 머신러닝
- 딥러닝
- Private ML
- KT
- bert
- Computer Vision
- Machine Learning
- matrix multiplication
- attention
- 자연어처리
- Natural Language Processing
- Pre-training
- Knowledge Distillation
- Residual Connection
- GPT
- Knowledge Tracing
- ICML
- Transformer
- Data Augmentation
- Copilot
- Deep learning
- Homomorphic Encryption
- math
- Today
- Total
목록Data Augmentation (2)
Anti Math Math Club
이번 포스트에서는 (제가 알기로는) Consistency Regularization이 처음 소개된 논문인 Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning이라는 논문에 대해서 알아봅시다. Consistency Regularization이란, 간단히 말해서 모델의 Input에 augmentation을 가해서 새로운 input을 만들었을 때, output (prediction)이 별로 변하지 않아야 한다는 가정을 바탕으로 모델을 regularize하는 방법 입니다. 예를 들어서, 이미지를 분류하는 CNN이 하나 있을 때, 기존에 있던 강아지 사진을 뒤집거나 돌리는 등의 작업을 해서 ..
보통 머신러닝 혹은 딥러닝 연구에서 어떤 문제를 풀 때 데이터가 부족한 경우 해결책으로써 가장 많이 생각하는 방법은 data augmentation 혹은 transfer learning (pre-training & fine-tuning) 입니다. 전자는 기존에 존재하는 데이터를 특정 방식으로 변형하여 비슷한 가상의 데이터를 만들어내는 것이고, 후자는 같은 도메인이지만 훨씬 더 크기가 큰 데이터에 대해서 모델을 먼저 훈련시킨 뒤 (pre-training), 원래의 데이터에 맞게 파라미터를 미세하게 조정해주는 (fine-tuning) 방법입니다. CV(Computer Vision)에서는 data augmentation 기법으로는 주어진 이미지를 자르고 붙이고 늘이고 뒤집는 등의 방법이 있고, transfer..